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Fig. 1. Comparing different temporal treemap methods using three time steps (t = 0, t = 10, and t = 20) of the WorldBankHIV data: (a)
Hilbert treemap method [26]; (b) Local moves method [25]; (c) Greedy insertion treemaps [29]; (d) SizePairs; and (e) SizePairs with
local moves. To reflect the stability of each method, we assign colors to each rectangle (based on its position) at the first time step and
then apply the color scheme to the other time steps (we mark three data items using shapes to facilitate the comparison). SizePairs is
more stable and maintains better aspect ratios, and SizePairs in combination with local moves (e) has even better aspect ratios than
SizePairs alone (d).

Abstract—We present SizePairs, a new technique to create stable and balanced treemap layouts that visualize values changing over
time in hierarchical data. To achieve an overall high-quality result across all time steps in terms of stability and aspect ratio, SizePairs
employs a new hierarchical size-based pairing algorithm that recursively pairs two nodes that complement their size changes over time
and have similar sizes. SizePairs maximizes the visual quality and stability by optimizing the splitting orientation of each internal node
and flipping leaf nodes, if necessary. We also present a comprehensive comparison of SizePairs against the state-of-the-art treemaps
developed for visualizing time-dependent data. SizePairs outperforms existing techniques in both visual quality and stability, while
being faster than the local moves technique.
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Treemaps [15] are a space-filling technique to visualize hierarchical
data. They depict a hierarchy as nested rectangles, where each node
in the hierarchy is shown as a rectangle, while the size of leaf nodes
encodes a numerical value. Because of their efficient use of space,
treemaps have been successfully used in many practical applications
(e.g., [14,18,30]). In addition to visualizing a static hierarchy, treemaps
can be used to visualize hierarchies that evolve over time (i.e., tempo-
ral treemaps) where the numerical value associated with a leaf node
changes and nodes are inserted or deleted at a certain time point.

A simple way to construct temporal treemaps is to build a treemap



separately for each time step by using any existing static treemap layout
method and combine them. However, the treemaps resulting from most
methods are difficult to compare visually because the same data item
might appear in different locations at different time steps. Although the
Slice-and-Dice method [23] can ensure stability, the visual quality of
its resulting layout is poor. To take stability into account, Shneiderman
and Wattenberg [24] presented ordered treemaps which ensure that
items always are placed close to each other in the treemaps over time.
Although such treemaps and their variants [1, 26, 27] greatly improve
stability, preserving the data order cannot be guaranteed. When data
changes over time, neighboring items in the order often are not placed
closeby in a completely re-computed treemap (e.g., Fig. 1(a) by the
Hilbert method [26]). Moreover, for complex data these methods often
result in the treemaps with poor aspect ratios.

To address this issue, researchers proposed state-aware treemaps,
such as Local Moves (LM) [25] and Greedy Insertion Treemaps
(GIT) [29], which control stability by using the treemap of the pre-
vious time step to compute the next one. LM adapts the treemap via
local modifications (i.e., flip and stretch operations), while GIT incre-
mentally updates the treemap of the first time step, maintaining a tree
structure. Both methods substantially improve the stability between
adjacent time steps while maintaining high visual quality. However,
since they rely on the treemap of the first time step, the visual quality
and long-term stability of such treemaps decrease over time if data
changes significantly (Figs. 1(b,c)), especially for frequent insertions
and deletions.

In this paper, we introduce SizePairs, a new treemap layout algorithm
to generate a series of high quality layouts, while maintaining short-
and long-term stability. Instead of starting from the layout of the first
time step, SizePairs first constructs a global layout tree by considering
the entire time steps, and uses this tree to derive the layout of each
time step. SizePairs employs a new hierarchical pairing algorithm that
recursively pairs two nodes that complement their size changes over
time and have similar sizes. For example, if one data item is growing
and the other is shrinking, pairing them in a hierarchy limits the impact
of the data change to a local region, thus making the global layout more
stable. To avoid rectangles with poor aspect ratios, we further ensure
paired items to have similar sizes over the whole time. Starting with
each data item as an individual leaf, SizePairs iteratively pairs and joins
nodes until one node is left. During this procedure, nodes with similar
sizes are preferably paired together for achieving a good visual quality.
Once a binary pairing tree is built, SizePairs aggregates the temporal
changes of each node into one value and uses the aggregated results to
select a splitting orientation (vertical or horizontal) for each internal
node to achieve better aspect ratios. As a result, a global layout tree
is constructed for single-level treemaps, while the one for multi-level
treemaps can be constructed in a recursive way.

Based on the pre-computed global layout tree, SizePairs allows for
an interactive generation of a stable and balanced treemap for each time
step (see Fig. 1(d)). Furthermore, SizePairs includes an optional step
that allows to apply local moves operations (i.e., flip) to the leaf nodes
of the layout tree for further improving its visual quality, see the area
marked by the white circle in Fig. 1(e). Although this step might reduce
stability, within each internal node the stability is maintained and thus
the resulting instability is typically not perceived. In addition, users are
allowed to edit the global layout tree to interactively customize treemap
layouts for satisfying application requirements in a stable way, such as
item re-ordering and label placement.

We compared SizePairs with the state-of-the-art methods using a
large set of real-world datasets as benchmarks. The results show that
SizePairs performs the best in terms of the short- and long-term stability
measures—corner-travel distance and normalized location drift—and
the mean aspect ratio, regardless of data characteristics (e.g., the levels
of hierarchy). Regarding runtime, it is similar to GIT but is nearly
one order of magnitude faster than LM. Our qualitative evaluation also
reveals that the visual quality of layouts that SizePairs generated is
more consistent throughout all time steps.

In summary, our contributions are twofold: (1) SizePairs, a new
layout method that generates stable and balanced temporal treemaps by

introducing a size-pairing based global layout tree and (2) a compre-
hensive evaluation that shows SizePairs outperforms the state-of-the-art
methods in terms of short- and long-term stability and visual quality.

2 RELATED WORK

A few techniques have been developed for visualizing evolving hierar-
chies, which are mainly based on two visual representations: temporal
treemaps and nested streamgraphs [2, 6, 17, 19]. The former generate a
series of treemaps with good stability over time for showing changes in
the data, while the latter attempt to convey the overview of the whole
data in a single view based on the ThemeRiver metaphor [4, 12]. Here,
we focus on temporal treemaps [22], specifically on quality metrics and
methods for generating them.

2.1 Quality Metrics
Temporal treemaps are mainly evaluated in terms of two criteria—
visual quality and stability—and a few corresponding metrics have
been introduced.
Visual Quality. The visual quality of a treemap is usually defined
as the mean aspect ratio of the rectangles in the treemap. As shown
in Kong et al. [16], graphical perception for comparing rectangles
with extreme aspect ratios (e.g., thin elongated rectangles with aspect
ratio of 9

2 ) is known to be inaccurate. Therefore, most of the methods
have attempted to avoid extreme aspect ratios. Although extreme
aspect ratios are definitely considered ineffective, the optimum aspect
ratio for rectangles is still under investigation. Traditionally, an aspect
ratio closer to 1 (i.e., a square) has been regarded better and has long
served as an optimization objective for many methods. For example,
Squarified treemaps [3] and Approximation treemaps [20]. Squarified
treemaps use an effective heuristic to achieve near-optimal (i.e., close
to 1) aspect ratios, and Approximation treemaps are mathematically
proven to ensure a bound for the worst aspect ratio. Both methods
produce treemaps with good aspect ratios in practice.

However, user studies [13,16] revealed that using other aspect ratios,
such as 3

2 or 2
3 , can lead to more accurate comparison. In this paper, we

do not optimize a layout towards a certain aspect ratio. However, we
found the mean aspect ratio of layouts generated by our technique was
the closest to 2

3 compared to other state-of-the-art methods (Sect. 4).
Stability. The stability of treemaps quantifies how much the same item
in different layouts is consistently located. Various measures have been
introduced to measure the stability between two layouts. Shneiderman
and Wattenberg [24] used the Euclidean distance between the vectors
(x,y,w,h) of two rectangles, where x and y are the coordinate of the
top left corner of each rectangle and w and h are the width and height,
respectively. A simplified metric [9, 11] was also used, only measuring
the distance between the centroids of the rectangles not considering
their sizes. Another measure, popular in the computer vision field, is
the corner-travel distance [28] that is defined as the sum of the distances
between the four corners of two rectangles. These metrics are limited
to capturing the stability between two adjacent layouts (i.e., short-term
stability). To address this, Tak and Cockburn [26] proposed a location
drift that measures how a rectangle is placed similarly throughout all
layouts (i.e., long-term stability). In our paper, we use the corner-travel
distance and normalized location drift to investigate both short- and
long-term stability.

2.2 Temporal Treemaps
A trade-off exist between visual quality and stability when generating
temporal treemaps. To srike the balance between them, various methods
have been proposed; they can be grouped into two classes [28]: ordered
treemaps and state-aware treemaps.
Ordered Treemaps. Assuming that there is an ordering for all data
items, ordered treemaps [24] maintain a certain level of stability by
placing items closer to each other in the input data nearby in the layout.
A wide variety of ordered treemaps, such as [1, 7, 10, 11, 26, 27] have
been introduced. However, we did not include them in our evaluation,
since keeping the order of data does not necessarily produce stable



Fig. 2. A pipeline of our approach. (a) The input is a set of data items whose values vary at different time steps; (b) the items are organized by a
binary tree, where the items with inverse trends and similar sizes are combined together; (c) computing the splitting orientation of each node in the
binary tree, which is applied to all time steps for computing the layout; (d) the treemaps at four time steps.

layouts and the methods generally exhibited poor trade-offs between
visual quality and stability [28].
State-aware Treemaps. The most relevant works to ours are state-
aware treemaps [25, 29], recent methods that offer good trade-offs
between visual quality and stability. These methods reuse the layout
for the previous time step to compute the current one, usually achieving
better stability than indirectly keeping the data order. Sondag et al. [25]
first introduced an incremental algorithm for state-awareness where
an inital layout is generated by the Approximation treemap method
and is locally modified, such as stretch and flip (i.e., local moves), to
generate the next layout. The drawbacks of this incremental algorithm
are two-fold. First, it generates an initial layout only using the data in
the first time step but the first layout may not be suitable for the weights
in other time steps; thus the visual quality often decreases over time.
Second, it uses a hill-climbing [8] method to optimize the layout, but
this often takes too long; we found out that it is about ten times slower
than SizePairs.

Another state-aware algorithm is Greedy Insertion Treemap (GIT)
by Vernier et al. [29]. It creates an initial layout using the Squarified
treemap method and then constructs a binary tree (i.e., layout tree) of
the data items based on the layout where a left (right) edge indicates a
vertical (horizontal) split. Insertions and deletions are handled as tree
operations on the layout tree. We found that GIT outperforms most pre-
vious methods in general although its algorithm is very straightforward.
In Sect. 4, we show that SizePairs outperforms GIT in terms of visual
quality, stability, and computation time.

3 SIZEPAIRS TREEMAPS

Our work aims to create stable and balanced treemaps for time-varying
hierarchical data. We identify three design goals for our technique based
on the design principles on treemap visualizations and the lessons from
earlier work (i.e., LM [25] and GIT [29]).

• DG1. Create the layout of each time step as square as possible;

• DG2. Maintain the stability over time as much as possible; and

• DG3. Generate temporal treemaps as fast as possible.

The key challenge in achieving these design goals is that there are
conflicts and trade-offs between them. For example, LM is optimized
only partially for DG1 and DG2, where the visual quality and long-term
stability decrease over time (see an example in Fig. 1(b)). Moreover,
its computation cost is too expensive to make the method suit for
interactive application. On the other hand, GIT is a solution for DG2
and DG3 by rapidly updating a layout tree computed from the first time
step. However, because the layout tree may not fit to the other time
steps as data changes, it is likely to fail to meet DG1 (see an example
in Fig. 1(c)).

Instead, SizePairs is optimized both for DG1 and DG2 in a two-
step procedure. First, it organizes all data items into a binary tree
where all paired nodes are selected to complement their size changes
over time and have similar sizes. In doing so, rectangles formed by

the paired nodes have reasonable visual quality and good stability
over time. Then, SizePairs strives to meet DG1 by choosing a better
splitting orientation for each internal node and DG2 by using the global
layout tree to compute the layout for each time step. Regarding the
computational cost (DG3), SizePairs is lower than LM and comparable
to GIT, especially for multi-level hierarchies (see Section 4). Since
SizePairs needs the entire data to construct the binary tree, it can only
deal with offline data.

Fig. 2 shows the computation pipeline of SizePairs. Taking a nor-
malized n×m weight matrix W with a hierarchy on n data items and m
time steps (Fig. 2(a)) as the input, SizePairs first constructs a binary tree
for all items (Fig. 2(b)), followed by computing the splitting orientation
of each internal node to form the global layout tree (Fig. 2(c)). After
that, it uses this tree to compute the layout for each time step (Fig. 2(d)).
SizePairs includes an optional step, applying local moves to further
improve the visual quality of each time step. We refer to these two
variants as SizePairs and SizePairs-F, respectively. Figs. 1(d,e) show
the results generated by these two variants. Once the treemaps are
generated, users are allowed to interactively edit the global layout tree
to re-generate the treemaps that meet application-specific requirements.

3.1 Hierarchical Size-based Pairing

Given a set of data items, we construct the global layout tree by hierar-
chically merging pairs of items if they mutually compensate for their
changes over time while having similar sizes. Fig. 3 illustrates this
process. In Fig. 3(a) the weight of “Dave” increases and that of “Carol”
decreases and this way would be a potential compensating partner,
while the item “Alice” disappears and the weight of “Bob” increases
to complement the reduced space. In addition to such compensation,
we also encourage the items with similar sizes to be merged, which
prevents one rectangle from being squeezed too much due to the change
in the other. For example, the trend of “Carol” is better compensated
by the that of “Eve” but their size difference are too large to produce
rectangles with good aspect ratios (Fig. 3(b) vs. Fig. 3(d)). Accord-
ingly, we choose the nodes to be merged in terms of two criteria: i)
their compensation degree is larger than the other node pairs, and ii)
their size difference is not large so as to maintain the visual quality.
Before starting the pairing process, we take all data items as the leaf
nodes of the global layout tree.

Compensation Degree. Given two nodes i and j, we define the com-
pensation degree based on the change of each item between consecutive
time steps:

CD(i, j) =
1

m−1

m−1

∑
t=1

|(Wi,t+1 −Wi,t)+(W j,t+1 −W j,t)|
max(Wi,t ,Wi,t+1)+max(W j,t ,W j,t+1)

(1)

which is a value between 0 and 1. When CD(i, j) is zero, these two
items have completely inverse trends and thus compensate with each
other (see Figs. 3(b,c)). Namely, the rectangle corresponding to the
merged node remains stable over time. In contrast, pairing these two
nodes will cause instability when CD(i, j) is close to 1.



Fig. 3. Temporal compensating effect: (a) line chart showing the values of
five data items over time; (b-d) show different pairing results: (b) pairing
rectangles “Carol” and “Dave” which vary over time; (c) pairing “Alice”
and “Bob”; and (d) pairing “Carol” and “Eve”, which results in poor aspect
ratios for Carol.

Size Difference. Given two nodes i and j, we compute their size
difference by:

SD(i, j) =
1
m

m

∑
t=1

|Wi,t −W j,t |
max(Wi,t ,W j,t)

(2)

which ranges in [0,1]. A small SD(i, j) means that two nodes have
similar sizes, indicating that both small rectangles within the merged
rectangle have good aspect ratios (see Fig. 3(b)). In contrast, a large
SD(i, j) means that packing two nodes together is likely to form the
rectangle with extreme aspect ratios, see Fig. 3(d).

Based on these two terms, we define the cost between two nodes as:

C(i, j) = ω CD(i, j)+(1−ω) SD(i, j) (3)

where ω is a constant. In our experiment, we found that ω = 0.5 works
well.
Hierarchical Pairing. Although the second term in Eq. 3 is helpful
in selecting similar sized nodes to pair, it cannot prevent the case that
two nodes with the smallest total cost are selected. To reject extreme
cases, we require that the nodes with the sizes being larger than one
third of the whole area can only be merged to the ones with similar
sizes. For short, we refer such nodes as super nodes. This is inspired by
the Approximation treemaps [20], which recursively split the rectangle
into two sub-rectangles with the area ratio close to 1:2. To fulfill this
goal, we propose a customized hierarchical clustering algorithm.

After initializing each item as a leaf node, we compute the cost
between all node pairs and calculate the area of each node as the
median of the corresponding time series. Next, we select super nodes
based on their areas and put them into another list if there are. Then, we
choose the pair from the remaining non-super nodes with the smallest
cost to merge as a new node. We repeat this process until there is only
one non-super node. Finally, super nodes and the left node (if there
is one), are merged in the same way. Fig. 4(a) illustrates the first two
steps of applying the hierarchical pairing method to the data shown in
Fig. 2. The overall time complexity of this algorithm is O(n3m), where
n is the number of data items and m is the number of time steps.

To reduce the computation cost, we do not immediately compute
the cost between the newly merged node and the other nodes after
merging but update the cost matrix once all non-super nodes are paired
or only one node is left (see Fig. 4(b)). In other words, the maximal
number of computing operations is n2m/4i at the ith iteration. Doing
so, a balanced hierarchy is created with the overall time complexity
O(n2m), while further alleviating the case that merging between large
and small-sized nodes. In our experiment, we found that our algorithm
is faster than LM and GIT when a hierarchy is present in the input data.
For more detailed comparison, please refer to Sect. 4.
Multi-level Treemaps. For the input data with a hierarchy, we apply
the above hierarchial pairing process from the root to the leaf level
separately. Fig. 5 shows an example, where the pairing tree shown
on the right preserves the topology of the input hierarchy. Since the

Fig. 4. Comparing two hierarchial pairing procedures with the data shown
in Fig. 2. (a) Traditionally, only a single node is merged at each iteration;
(b) our customized process pairs all non-super nodes at each iteration.

Algorithm 1 Algorithm for hierarchical paring
Require: A set of data items {p1, · · · , pn} and a weight matrix W
Ensure: The binary pairing tree T

1: Initialize each leaf node with one data item
2: Put all leaf nodes into an empty list P
3: Initialize an empty list L
4: Compute the median weight among all time steps for each node
5: Compute the cost matrix for nodes in P
6: repeat
7: Find the super-nodes in P and put them into L
8: Merge the remaining nodes in P in pairs
9: Update the cost matrix for nodes in P

10: until There is only one node v in P
11: Put v into L
12: Compute the cost matrix for all nodes in L
13: repeat
14: Merge the two nodes with the smallest cost
15: Update the cost matrix
16: until There is only one node
17: Take the only remaining node as the root of T
18: return T

pairing process is done among the nodes with the same parent, it even
takes less cost than pairing single-level treemaps. For example, we only
need to perform pairing twice among four nodes and once among three
nodes in Fig. 5, while the single-level treemap in Fig. 2 takes more time
to pair 7 nodes.

Fig. 5. (Left) An input hierarchy; (Right) A binary pairing tree computed
from the input hierarchy.

3.2 Interactive Treemap Generation
Once the binary pairing tree T is constructed, we need to convert it into
a global layout tree by determining the splitting orientation for each
node and then use this global tree to guide the treemap layout for each
time step.



Splitting Orientation. Given a rectangle R, we recursively split it into
two parts Rl and Rr corresponding to the two nodes in T . Since the
splitting can be done horizontally or vertically, we need to choose one
that results in rectangles with better aspect ratios. However, globally
searching for the best orientation for each node over time is time
consuming. Hence, we use a heuristic method that uses the median
weight of the time series of each node to split R in both orientations
and then choose one that results in better aspect ratios. In doing so, a
global layout tree LT is obtained, see an example in Fig. 2(c).
Computing Layout. Following the same splitting strategy in LT , we
compute a treemap for each time step by using the corresponding
data values to determine all splitting positions. In doing so, the re-
sulted treemaps are highly stable, while maintaining good aspect ratios.
Fig. 2(d) shows four exemplar treemaps created in this way.

To further improve the visual quality, we allow users to perform a
flip operation to leaf nodes at each time step. Specifically, for each
node at the second last level, we compare the aspect ratios αo and αn
resulted by the given orientation and the other one and select the other
orientation if αo/αn is larger than a threshold. In our experiments, we
found that setting the threshold to 1.1 works well for most data. The
flip operation is optional; we refer to our method without flipping as
SizePairs (SP) and with flipping as SizePairs-F (SP-F) hereafter.

Since our method allows node size to be zero during pairing, it
does not require any special strategy to handle insertions, deletions or
reinsertions. In contrast, LM has to find a new position for the inserted
nodes by optimizing the aspect ratios, which leads to instability. As
shown in Fig. 6, our method ensures that nodes (C) are reinserted at a
consistent place after being deleted.

Fig. 6. Illustrating the difference between LM and our method in handling
insertions.

3.3 Customizing Global Layout Tree
Since our method separates the global layout tree construction from
the final treemap generation, users are allowed to interactively edit the
layout tree for meeting application requirements. Here, we provide two
strategies for customizing the layout tree.
Stable Node Re-pairing. Given a treemap, it is hard for users to com-
pare the sizes of two non-adjacent rectangles of interest. To overcome
this drawback, SizePairs allows users to interactively re-pair such nodes
by exchanging the corresponding leaf nodes. An example is shown
in Fig. 7(a), where the node R1 and L2 are exchanged in the tree (see
top left), resulting in a new treemap (see bottom right) with R1 and R2
placed together. It should be noted that the gray nodes in Fig. 7(a) are
arranged at the same or similar positions since our global layout tree
ensures the layout stability.
Label Friendly Splitting. The interactive exploration often involves
examining the labels of some leaf nodes. However, the splitting orien-
tation results in the rectangles with good aspect ratios, yet which might
not fit with the label size. For such rectangles, SizePairs alleviates the
issue by changing the splitting orientation of its parent node to see if
the label can be clearly shown. Fig. 7(b) shows an example, where
the labels with red and blue on top cannot be discerned but are nicely
placed after changing the splitting orientations.

4 EVALUATION

In this section, we present a benchmark that quantitatively and qualita-
tively compare our method with the state-of-the-art methods in terms
of visual quality, short- and long-term stability, and computation speed.

Fig. 7. (a) Interactively re-pairing the rectangles corresponding to leaf
nodes R1 and R2 in the global layout tree, resulting in a desired treemap;
(b) changing the splitting orientations in the global layout tree for efficiently
place labels.

Measures. As mentioned above, we used three metrics to evaluate the
quality of treemap layouts: (1) corner-travel distance for measuring
short-term stability, (2) normalized location drift for long-term stability,
and (3) aspect ratio for visual quality.

Corner-travel distance is a common metric for measuring the location
change of the four corners of a rectangle between two layouts, L and L’.
Let Ri (R’) denote the rectangle in L (L’), and pi, qi, ri, si (p’i,q’i,r’i,s’i)
the coordinates of the four corners of Ri (R’i), respectively. The corner-
travel distance between Ri and R’i is defined as follows [28]:

CT (Ri,R
′
i) =

||pi − p
′
i||1 + ||qi −q

′
i||1 + ||ri − r

′
i||1 + ||si − s

′
i||1

4
√

w(R)2 +h(R)2
(4)

where ||x||1 denotes the l1 norm, and w(R) and h(R) denote the width
and height of the entire layout, respectively.

The corner-travel distance (Eq. 4), however, does not consider data
changes between L and L’ that produce inevitable layout changes.
Therefore, if the weight of Ri changes a lot, CT (Ri,R’i) tends to overes-
timate the loss in stability since it also captures inevitable size changes.
To compute the stability between two layouts more accurately, Vernnier
et al. [28] measured the corner-travel distance between L∗ and L’ in-
stead of L and L’ where L∗ is a layout that is closest to L but built on the
weights of L’. We also followed this practice, the details on generating
L∗ from L’ and L can be found in [28].

Due to the normalization of the corner-travel distance by definition,
it lies in the range [0,1]. Since there are multiple rectangles in a layout,
we compute the unweighted mean of CT (R∗

i , R’i) for each Ri that is
present in both layouts, L∗ and L’. A smaller value is preferred for
the corner-travel distance; a value of 0 means the two layouts match
perfectly (i.e., the layout is completely stable).

In addition to the corner-travel distance, we used the normalized
local drift as an indicator for long-term stability [26]. Since the corner-
travel distance only considers two layouts at adjacent time steps, loca-
tion shifts made throughout multiple time steps are not captured well.
For example, if a rectangle gradually moves from the top-left to the
top-right corner of a layout over time, the corner-travel distance will
only capture the difference between two consecutive layouts, which
would be relatively small on average. However, from a global point of
view, the first layout would be completely different from the last.

To penalize such cases, we also computed the normalized location
drift for each method. For a rectangle Ri in time steps [1,2, · · · ,m], let
Ci, j be the center of the rectangle at time step j ∈ [1,m]. The center
of gravity for Ri throughout the time steps, CoG(Ri), is defined as the
mean of Ci, j for every j. Then, the normalized location drift of Ri is
defined as follows:



NLD(Ri) =
1√

w(R)2 +h(R)2
· 1

m
·

m

∑
j=1

|| CoG(Ri)−Ci, j||2 (5)

where ||x||2 denotes the l2 norm. Location drift was originally intro-
duced in [26], but we further divide the value by the diagonal length
of the entire layout to normalize it into a range [0,1]. We computed
the mean of NLD(Ri) for every rectangle Ri in the dataset. Note that
there can be rectangles that appear or disappear in the middle of a time
sequence since the dataset is dynamic, which was not covered in the
original paper [26]. To reflect those changes in location drift more
accurately, we computed the weighted mean of location drifts, giving a
weight to NLD(Ri) proportional to the number of time steps in which
Ri was present. A smaller value for the location drift is desired.

The mean aspect ratio of rectangles has served as a metric for visual
quality, as rectangles with extreme aspect ratios, e.g., elongated rectan-
gles, are hard to perceive. The aspect ratio of a rectangle Ri is defined
as follows [28]:

AR(Ri) =
min(w(Ri),h(Ri))

max(w(Ri),h(Ri))
(6)

where w(Ri) and h(Ri) are the width and height of Ri. As explained
in [28], AR(·) is the reciprocal of the usual definition for the aspect ratio.
This allows AR(·) to be bounded in [0,1], making the mean aspect ratio
more robust. For this measure, all rectangles are weighted equally.

Traditionally, an aspect ratio to 1 has been considered ideal, but a
user study [16] revealed that humans are more accurate in comparing
size differences between rectangles of a 2/3 aspect ratio than squares.
Although the optimum aspect ratio for size comparison is still under
investigation, a range [2/3,1] seems reasonable for the desired aspect
ratio. We found out that, in practice, it is even challenging to achieve
the lower bound of the range (i.e., 2/3) since the dataset is dynamic.
Therefore, we consider a higher AR is better.
Datasets. As benchmark datasets we used a collection of time-
dependent hierarchical datasets proposed by Vernier et al. [28] with
2,405 datasets in total. They characterized each dataset in the collection
in terms of four features, assigning them to four subclasses. Below are
the features and subclasses they used:

• Levels of hierarchy: 1 level (1L), 2 or 3 levels (2/3L), and 4 or
more levels (4+L)

• Variance of node weights: low (LWV) and high (HWV)

• Speed of weight change: low (LWC), regular (RWC), and spiky
(SWC)

• Insertions and deletions: low (LID), regular (RID), and spiky
(SID)

Note that there is a different amount of datasets for each combination
of subclasses. Therefore, we averaged the three metrics over datasets in
the same combination. For more details on classification, please refer
to the original paper [28].
Methods. As mentioned above, we compared SizePairs (SP) with
LM [25] and GIT [29] since they exhibit a good trade-off between
stability and visual quality [28]. We did not include methods that
were optimized for a certain aspect; for example, Slice-and-Dice [23]
generates very stable layouts but their visual quality (i.e., mean aspect
ratio) was about three times worse than that of LM or GIT [28]. On
the other hand, unordered methods such as Squarified treemaps [3]
often achieve near-optimal aspect ratios but they do not consider the
stability between layouts at all. Therefore, we excluded such “extreme”
methods from our evaluation.

As a result, we compared the following five methods with specific
parameter settings: LM0, LM4, SP, SP-F, and GIT. LM0 and LM4
are the incremental algorithm introduced in [25] with no local moves
allowed (LM0) and with four local moves allowed (LM4). These
methods were also included in the previous evaluation by Vernier et

al. [28]. We included two versions of our method with different settings:
SizePairs without flipping (SP) and with flipping (SP-F). Note that
we also included Hilbert and Moore treemaps (HIL) for measuring
long-term stability as this method stems from the paper where location
drift was first introduced [26].

Fig. 8. Effect of hyperparameter ω on visual quality (aspect ratio) and
stability (corner-travel distance and location drift). For the aspect ratio,
a higher value is better. For corner-travel distance and location drift, a
lower value is better.

Parameter Choices. Among the tested methods, GIT and HIL do not
have any parameter, while LM and our method have a parameter: the
maximal number of moves and ω . For LM, we follow the recommen-
dation from its authors to set these parameters to 0 and 4, respectively.
For our method, prior to the comparison, we investigated the effect of
hyperparameter ω on visual quality and stability. We randomly chose
100 datasets in our corpus and computed their corner-travel distance,
location drift and aspect ratio, while changing ω from 0 to 1. As shown
in Fig. 8, when ω is high, the cost term (Eq. 3) puts more emphasis on
the compensation degree, favoring stable layouts; two curves for stabil-
ity, the yellow curve in Fig. 8(a) and the curve in Fig. 8(b), decrease
as ω increases. When ω is low, the stability measures degrade but the
gain from aspect ratio is not substantial. In summary, a value in the
range [0.4,0.8] seems a reasonable choice for ω ; therefore, we set ω to
0.5 in our experiment (highlighted as dotted lines in Fig. 8).
Quantitative Results. We first reproduced previous benchmark re-
sults (Fig. 9) with our methods, SP and SP-F, included. Each plot in
Fig. 9 shows the relationship between mean corner-travel distance (i.e.,
short-term stability) and mean aspect ratio (i.e., visual quality) for dif-
ferent methods with datasets grouped by subclasses in a certain feature.
The position of a point in the plot represents the mean corner-travel
distance and mean aspect ratio with its shape encoding one subclass.
We colorize and connect points using polylines for the same method
consistently. Recall that for the corner-travel distance, a lower value is
better while for the aspect ratio, a higher value is better. Therefore, an
optimal method, if existing, will be located at the bottom-right corner
of the plots.

Overall, we could reconfirm the trade-off between stability and visual
quality. The trade-off was clearer when comparing two versions of the
same method (e.g., SP vs SP-F). For example, for all subclasses, SP
generated more stable layouts than SP-F while SP-F generated layouts
with better aspect ratios. This was also true for LM; LM0 was always
more stable than LM4 while LM4 exhibited a better visual quality than
LM0. Due to these trade-offs, we could not decide globally on the best
version for each method.

To perform the comparison between different methods, we decided to
make pairwise comparison between the methods that exhibited similar
trade-offs. For example, SP, LM0, and GIT commonly favored stability
over visual quality, while SP-F and LM4 put more weights to the aspect
ratio. Thus, we split methods into two groups and compare methods
within the same group.

Fig. 9 shows that, for most subclasses, SP was superior to LM0
(81.8%, 9/11) and GIT (90.9%, 10/11) in terms of stability and visual
quality (the points for SP are located closer to the bottom-right corner
than those for LM0 and GIT). SP-F outperformed LM4 in terms of both



Fig. 9. Relationship between visual quality (aspect ratio) and short-term
stability (corner-travel distance) of different methods for datasets grouped
by their characteristics. Note that for aspect ratio, a higher value is better,
and for stability, a lower value is better. Therefore, a method is superior
to another if its point is closer to the bottom-right corner.

metrics for all subclasses (100%, 11/11).
To further investigate under which dataset conditions SP and SP-F

outperform LM and GIT, we compared their performance for every
combination of subclasses in Fig. 10. The first table in Fig. 10 compares
SP and GIT; it shows all possible combinations of subclasses for the
four features, and a cell is colored in green if SP dominates GIT in
terms of both measures, gray if there is a trade-off, red if GIT dominates
SP, or white if there was no dataset under the corresponding subclass
combination. In summary: SP outperforms LM0 in 20 cases (43.5%,
20/46) and GIT in 33 cases (71.7%, 33/46). SP-F outperforms LM4
in 31 cases (67.4%, 31/46). There is no case under which LM0 and
LM4 dominate SP and SP-F, but there is only one combination where
GIT outperforms SP. We further inspected this case and found that the
datasets with this combination have weights that almost do not change
over time. In such a case, GIT can maintain the near-optimal aspect
ratio from the initial layout.

Fig. 11 shows the normalized location drift (i.e., long-term stability)
of the methods for different feature subclasses. In this comparison, we
included the Hilbert and Moore treemaps (HIL). Overall, SP and GIT
showed the best stability, followed by SP-F. In 7 out of 11 cases (63.3%),
SP showed the lowest normalized location drift; in the remaining 4
cases, GIT was the best. LM0 and LM4 were better than HIL but
underperformed SP and GIT.

Qualitative Results. To understand how well each method preserves
the stability of layouts, we inspected the layouts of a single-level hier-
archy and a multi-level hierarchy. For the single-level hierarchy, we
used the WorldBankHIV dataset that consists of 107 nodes and 25 time
steps. Fig. 1 shows the corresponding treemaps . At t = 0, all methods
generate layouts with good aspect ratios. However, in the layouts made
by HIL (Fig. 1(a)), the topology between rectangles, which is depicted
as similarity of colors, was lost at t = 10 and t = 20. It was better
preserved in the layouts made by stable methods such as LM4 and GIT
(Figs. 1(b,c)), but their visual quality degrades as t increases, as shown
by the squeezed rectangles marked with squares and triangles at t = 20.
In contrast, both, stability and visual quality, were well maintained by

Fig. 10. Superiority of SP(F) over LM and GIT. Green cells indicate SP(F)
outperforms GIT or LM on average in terms of corner-travel distance and
aspect ratio for datasets with a certain feature combination. Gray means
there is a trade-off (e.g., aspect ratio is better but stability is worse). Red
means our method was inferior in terms of both metrics.

Fig. 11. Normalized location drift of different methods: A lower value is
better. SP exhibits the lowest drift in 7 out of the 11 subclasses. Even
SP-F that puts more emphasis on visual quality shows comparable or
better stability than previous stable methods, such as GIT, LM, and HIL.

SP and SP-F layouts throughout all time steps. See how the displace-
ment between the rectangles embellished with symbols (circle, square,
and triangle) is preserved by our SP and SP-F layouts.

To compare the layouts for a multi-level hierarchy, we visualized
the NetMigration dataset that includes the top 100 countries with the
highest number of emigrants (n = 202 and m = 11) from 2008 to 2018
(Fig. 12). It has a two-level hierarchy, continent and country. Similar
to the WorldBankHIV dataset, LM4 and GIT layouts start with a good
aspect ratio, but the visual quality degrades in later frames. For example,
in the layouts for the last time step (2018), there are many elongated
rectangles with extreme aspect ratios, shown as a “barcode” pattern in
the layout (see the last layout of LM4). After carefully checking the
results, we found that such patterns appear due to datasets being highly
variable in weights, whereas only SizePairs can adapt for them.

With the NetMigration dataset, we could also observe how the meth-
ods deal with insertions and deletions. Since the dataset only listed
the top 100 countries for each year, some disappear and later re-appear
in the list. We found six countries (colored rectangles in Fig. 12) that
disappeared in 2012 and re-appeared in 2013. In the LM4 and GIT
layouts, such re-appearing countries were placed to a new location that



Fig. 12. Treemaps for the NetMigration dataset generated by SP-F, LM4, and GIT. Nodes that disappear in 2012 and re-appear in 2013 are placed
consistently to their previous locations by SP-F.

was distant from the position they were in 2011 (e.g., blue rectangles
in 2011 and 2013). In contrast, in the SP-F layouts they were placed to
locations similar to 2011, making the comparison between 2011 and
2013 easier. This is because SP treats deleted nodes as zero-sized nodes
in the layout tree and does not completely detach them from the tree.
Later it places the nodes to similar locations when they re-appear.

Fig. 13. Mean aspect ratio over time. For GIT and LM, the mean gradually
degrades due to accumulating weight changes.

In both datasets, we observed a degradation in visual quality for LM
and GIT layouts. We further investigate these phenomena by plotting
the changes for the mean aspect ratio over time for the two datasets
Fig. 13. The actual treemap layouts for these datasets can be found in
Fig. 1 and Fig. 12. As shown in Fig. 13, GIT and LM layouts usually
start with an aspect ratio close to 1. This is because they construct an
initial layout optimized for the first time step. However, as time (on the
x-axis) progresses, the aspect ratio gradually decreases and eventually
converges to a very poor ratio close to 0.3. This may result from the fact
that these methods locally fix the previous layout for the current time

step, not considering the entire time series, so distortions accumulate
due to weight changes. Such a drop in visual quality can considerably
hinder an analysis for later time steps. In contrast, SP shows a more
consistent visual quality. The reasons may be that 1) SP constructs an
initial layout considering the median weights over all time steps and 2)
the size difference term (Eq. 2) makes the layout more robust to weight
changes by matching similar sized nodes.

Computation Time. We compared the efficiency of the methods by
measuring their average running time for computing the layouts for 10
datasets. We used an open-source implementation of LM and GIT [5],
which was also used in the previous benchmark [28]. The implemen-
tation of SP and SP-F is available in our repository on GitHub1. All
methods are written in Java, and the experiment was performed on a
desktop with Intel(R) Core i7-9700F CPU@3.00GHz and 16 GB of
RAM. We ran each method on each dataset ten times and calculated
the average as the final result. Note that different methods may offer
different opportunities for acceleration, e.g., parallelization, so when
they are fully optimized, the ranking between them can change. For
example, the computation of the cost function (Eq. 3) in SP can be fully
parallelized between node pairs since there is no data dependence. In
our comparison, however, neither method used a specific acceleration
technique.

The result is shown in Table 1. We chose the 10 datasets with
different numbers of nodes and time steps: n indicates the maximum
number of nodes included in a layout, m is the number of time steps
in the data. Note that the number of nodes in each layout varies due
to insertions and deletions. Overall, LM had a long running time
compared to other methods. LM4 was the slowest followed by LM0.
As an example, LM4 took more than 30 seconds to generate the layouts
for 24 time steps in the Names dataset.

There was not much difference between SP and SP-F, both methods
showed a comparable running time to GIT. SP and SP-F slowed down
for large numbers of nodes in one level. For example, although TMBD-

1https://github.com/Ideas-Laboratory/SizePairs

https://github.com/Ideas-Laboratory/SizePairs


Table 1. Average running time of different methods for computing the
layouts for various datasets.

Dataset Size Running Time (ms)
n m lv. SP SP-F GIT LM0 LM4

SafeSanitation 82 17 1 39 40 136 58 2,005
Coffee 86 20 3 22 29 136 34 277

LaborEducation 89 29 1 143 153 206 688 1,727
WorldBankHIV 107 25 1 112 113 278 69 6,275

FoodDeficit 116 26 2 68 74 219 47 1,866
BoundRate 145 23 2 72 74 242 265 1,583

MaternalDeaths 182 27 2 78 82 359 79 4,692
Population 217 59 2 173 175 704 196 16,977

Names 372 24 1 2,042 2,284 1,598 12,210 32,434
TMBDChildren 670 20 2 128 130 5,491 953 6,031

Fig. 14. A challenging case where no pair of nodes is mutually able to
complement for size changes over two time steps. The numbers in each
rectangle at t1 indicate the amount of size changes at t2.

Children has more nodes (670 nodes), SP and SP-F took about six times
longer to compute the layouts for Names (372 nodes) since all nodes
were at the same level. This is due to the fact that when a hierarchy is
present in data, the number of nodes (i.e., siblings) to be considered
in one hierarchical pairing operation is reduced, which is the main
bottleneck of our method. As a result, GIT was faster than SP and SP-F
for datasets without hierarchies (e.g., SafeSanitation, LaborEducation,
WorldBankHIV, and Names) while SP and SP-F were faster for datasets
with hierarchies (the remaining 6 datasets in Table 1).
Challenging Cases. In some cases, there are no data items that can
complement for size changes of other nodes over time. Fig. 14 shows
an example dataset consisting of six nodes and two time steps, where
one node’s weight increases by 50 and the other five’s decrease by
10. Thanks to the size difference term in our cost function (see Eq. 3),
SizePairs chooses the nodes with similar sizes in the pairing process.
As a result, it yields better aspect ratios than other methods while
maintaining similar stability.
Summary. In summary, through the benchmark tests and our qualita-
tive investigation we found that:

• Despite the known compromise between stability and visual qual-
ity, SizePairs offers better trade-offs, often outperforming previ-
ous methods such as LM, GIT, and HIL in terms of corner-travel
distance, mean aspect ratio, and normalized location drift (DG1
and DG2);

• As a result, SizePairs better preserves the topology between nodes

and their aspect ratios throughout the entire time period, while
other methods often distort them especially at later time steps;
and

• The running time of SizePairs is faster than LM and compara-
ble to GIT, showing the best performance among state-aware
treemapping methods, at least when a hierarchy is present in data
(DG3).

5 DISCUSSION & FUTURE WORK

As shown in the Evaluation section, SizePairs, a new temporal treemap,
outperforms state-of-the-art methods in generating layouts of high vi-
sual quality and strong stability, while being faster than the local moves
method. Unlike previous methods, it constructs a global layout tree by
considering the entire time series. Specifically, SizePairs employs a
new hierarchical size-based pairing algorithm that recursively merges
pairs of nodes with mutually compensating changes over time and
similar sizes. SizePairs further improves visual quality and stability
by optimizing the splitting orientation of each internal node. Based
on this global layout tree, the treemap layout of each time step can
be generated rapidly, while allowing users to interactively customize
treemap layouts for meeting application requirements in a stable way.

As non-treemap-based alternatives, a few hierarchical data visual-
ization techniques [2, 17, 19] can visualize hierarchical changes over
time in a static overview by showing each tree node as a stream. How-
ever, these techniques are limited to a subset of hierarchical changes
in the data [17, 19]. Although Splitstreams [2] support all possible
hierarchical changes, all stream-based techniques have two inherent
drawbacks: one is not scalable to hundreds of nodes and the other is
suffering from a large number of stream crossings for complex data.
In contrast, temporal treemaps, especially SizePairs, do not have these
issues.

However, our approach also has some limitations. First, SizePairs
might not be the best method for data with small changes over time,
where our hierarchical pairing algorithm cannot find proper nodes to
merge. One example is the data corresponding to the single red cell
in Fig. 10. In such cases, GIT and LM both are better choices, since
they generate a high quality treemap layout for the first time step.
We like to quantify data characteristics and use this information to
automatically suggest a proper treemap layout algorithm for different
datasets. Second, SizePairs is built on the entire time series, which
limits its usefulness in dealing with the streaming data. To address
this issue, we will investigate the possibility of combining incremental
hierarchical clustering algorithms [21] with SizePairs for dynamically
updating the global layout tree. Last, it is unclear if the trade-off
between visual quality and stability made by SizePairs better supports
data analysis tasks. Therefore, it would be useful to conduct a user study
to better understand the trade-off and use it to further improvements of
the layout algorithm.
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[10] S. Hahn, J. Bethge, and J. Döllner. Relative direction change-a topology-
based metric for layout stability in treemaps. In Proceedings of the Interna-
tional Conference on Information Visualization Theory and Applications,
pp. 88–95, 2017. doi: 10.5220/0006117500880095
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